
A
new mechanism for control loop
performance monitoring and equipment
fault detection, based on cluster trending
analysis, is very sensitive to small signal
variations and capable of detecting the
abnormal signals embedded in the normal

signals.
Highly reliable automated systems require health

monitoring capable of detecting any equipment faults as
they occur and identifying the faulty components. Control
loop performance depends on the operating environment
and equipment health status. Loop re-tuning can improve
the performance when the operating environment has
changed. However, if some equipment in the loop is
malfunctioning, the simple control loop re-tuning will be
less effective in improving the loop performance.
Therefore, it is important to design a loop performance
monitoring system with the capability of monitoring both
the loop performance and the faults of equipment in-loop.

Component fault detection has been the subject of
numerous studies in the past few decades. Initial work in
this area employed a variety of paradigms to both detect
and characterise faults. Traditional time-based machinery
maintenance is being replaced by maintenance based on
the condition of the machinery. A common problem in the
fault detection is how to avoid false alarms that might be
provoked due to the presence of equipment noisy signals.
In our view, the statistical hypothesis tests, together with
feature-based trend analysis over the historical data, can
effectively assist the maintenance decision-making.

We take a different approach towards the loop
performance monitoring problem. Instead of treating
performance monitoring and equipment fault detection
as two separate problems, we take a unified approach in
the sense that we solve these two seemingly different
problems in terms of abnormal event detection.
Specifically, an abnormal event is defined as a statistically
significant deviation of sensor measurements from so-
called normal behaviours determined a priori. The main
advantage of our approach is to easily identify the root of
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Fig 2: A time series of sensor measurement.

Fig 1: Major
components in

our system.
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performance degradation in a control loop. For example,
if an equipment in-loop is malfunctioning, controller re-
tuning will not improve the overall loop performance.

We present a new mechanism for the control loop
performance monitoring and equipment in-loop faults
detection. Our method is based on the cluster trending
analysis which is very sensitive to small signal variations
and capable of detecting the abnormal signals embedded
in the normal signals. We will also present two test cases
based on the real measurement data. We will use the real
control loop data to monitor the loop performance. Based
on the sensor data, we detect the faulty conditions of an
industrial pump in near-real time.

SYSTEM OVERVIEW
Our system is primarily developed to detect so-called
abnormal event (for example, an abnormal event can be
control loop performance degradation or equipment in-
loop malfunctioning). There are four major components
in our detection system, which are shown in Figure 1.

The raw sensor measurements are segmented based on
a moving window with its size determined from the
normal data a priori. In each window, the number of
clusters is automatically estimated based on our machine
learning scheme. As this window moves forward in time,
a cluster trend is constructed. This cluster trend is
statistically compared with the normal cluster trend. If
they are statistically significantly different, an abnormal
event is declared. In the following sections, we will
describe the details of individual components.

CLUSTER TRENDING PROFILE
Suppose we have a time sequence of a discrete sensor
measurement, where k represents the time instant at kth
sampling time. One example of such a signal is shown in
Figure 2. For simplicity, the sampling time T is omitted.

In the traditional time series analysis, k is required to
be consecutive, meaning that k + 1, k + 2, …, k + n
represent n time instants sampled consecutively. This
condition is partially relaxed in our system. For

nding analysis
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The main advantage of our
approach is to easily identify 
the root of performance
degradation in a control loop
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example, our system works with not only the usual
sequence of data k = 1 to N but also as k = N+p, to M,
where p ≥ 1. Being able to process this type of data
sequence is important because a small portion of
measurement data required for monitoring can be
missing or unusable for various reasons (for example, a
control loop was in manual mode for certain period of
time).

To detect abnormal event in the sensor measurement,
instead of using the traditional features such as statistical
or spectrum features, we extract cluster trending features
from the data. In particular, we estimate the number of
clusters in a small data window. As this window moves
forward, a cluster trend is constructed.

Our estimation of cluster number in the data window
is based on our unsupervised machine learning scheme
called ASOM (Adaptive Self-Organising Maps) which is a
variation of Kohonen’s Self-Organising Maps (SOM). SOM
emulates the unsupervised learning in an elegant,
extremely simple manner. During self-organising
procedure, the topologically close relationship of the
organised information is maintained.

The learning rule of SOM is ∆wi = hi,b (x – wi ) where
wi denotes the winner node, and hi,b is a neighbourhood
usually defined as a Gaussian or a Hubble function of the
node indices i and b. It is well known that this learning
rule is linked to an optimisation process which achieves
both a minimum matching error on the input neurons
and a reduced topological space. Unlike SOM, our ASOM
has the following unique features:

� A similarity measurement based prototype matching;
� Automatic learning of number of nodes (clusters)

without any prior knowledge; and
� Boundary points alignment for robust clustering.

ASOM starts with a null network and gradually learns
the new prototypes when new data samples cannot be
assigned to any existing prototypes. Figure 3 illustrates
an example of such a cluster trend.

The normal cluster trend profile is constructed based
on the normal operation data. For the control loop
performance monitoring, the normal data can be obtained
right after the loop is well turned. For the equipment fault
detection, it can be collected when the equipment is
considered to operate normally.

ABNORMAL EVENT DETECTION
Similar to the normal cluster trend profile construction,
for a real-time sensor measurement, we can construct a
cluster trend, as in Figure 4. To detect the abnormal event,
we compare this cluster trend with the normal cluster
trend profile.

Fig 4: A cluster trend based on real-time operation data.

Fig 5: Indicators of abnormal events.

Fig 3: An example of cluster trend.
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There are many methods used to statistically compare
the deviation between actual and normal cluster trends.
In our system, we use the likelihood ratio test (LRT).
Specifically, we estimate two predictive statistical
distributions of observed xn, namely, pnormal and pfault,
and detect the abnormal event by rejecting the null
hypothesis via LRT:

LRT = log (pfault/pnormal) 

Figure 5 illustrates an example of abnormal events
detected based on LRT. The value 1 indicates the existence
of an abnormal event (loop performance degradation or
equipment fault).

In other words, the abnormal event indicator is set to
TRUE (1) if two cluster trends are statistically
significantly different over a period of time. Since certain
momentary disturbance can cause the deviation of actual
and normal cluster trends, LRT alone is not sufficient to
eliminate the false alarms.

In our system, we declare the occurrence of an
abnormal event by calculating the entropy in the
abnormal event indicators generated from LRT. Let X be
a random variable taking a finite number of possible
values x1, x2, …, xn with the probabilities p1, p2, …, pn ,
an entropy is defined as:

If the entropy is greater than certain threshold level
determined a priori, we set the indicator of an abnormal
event to be value of 1, which implies the existence of the
degradation of loop performance or malfunctioning of a
piece of equipment in-loop.

TEST CASE 1 – 
LOOP PERFORMANCE MONITORING
To test the algorithm, we obtained process control loop
data from ExperTune (www.expertune.com). The datasets
span 24-hour process operations, ranging from 7:00 p.m.
in July 4th to 7:00 p.m. in July 5th, 2003. There are total 10
control loops with sampling time being one second. Data
of four parameters are collected in each loop: SP, PV, OP
and MODE. We have decided to only use PV, representing
the measurement of controlled variable.

Among 10 loops, we only selected 4 loops which were
operating entirely in AUTO mode during the 24-hour data
collection period. Data associated with the loop in
MANUAL mode should not be used. The four loops we
have selected for testing are: PIC51200, PIC52021,
TIC52021E and TIC52028E. Figure 6 shows the plots of the
entire PV data of these four loops. �

Fig 6: PV of four loops over 24-hour period.

(a) PV of control loop, PIC51200.

(b) PV of control loop, PIC52021.

(c) PV of control loop, TIC52021E.

(d) PV of control loop, TIC52028E.
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We divided the data into two segments: Data A and
Data B. Specifically, the data from 7:00 p.m. of July 4th to
7:00 a.m. of July 5th is grouped in Data A, which is treated
as normal data and used to construct the normal cluster
trend profile. Data B contains the data from 7:00 a.m. to
7:00 p.m. of July 5th are used to monitor the loop
performance.

Figure 7 shows the test results for all four loops. The
top portion of the figure shows the normal data
considered in this paper, the middle portion is the data
used for monitoring. The actual and normal cluster trends
are statistically compared. The performance indicator is
given at the bottom portion of the figure. Value 1 indicates
the performance deviation from the normal behaviour of
the loop.

Our observations:
� It seems that there is a disruption around 1:30 p.m. The

performance indicators of four loops all show
significant deviation between the actual and normal

signals around 1:30 p.m..
� The loop, TIC52028E, has shown certain performance

degradation. Its performance indicators after 1:30 p.m.
are more dense and persistent. Based on this, we would
recommend the loop re-tuning.

� All other three loops perform at acceptable levels
although the loop, TIC52021E, has the best performance
(close to the normal behaviour).

TEST CASE 2 – PUMP FAULT DETECTION
The data for this test case was acquired in the 
Delft “Machine diagnostics by neural networks” project
with help from Landustrie B.V, The Netherlands.
All datasets and help files can be downloaded freely 
at www.ph.tn.tudelft.nl/~ypma/mechanical.html. All
references can be found at this web site as well.

The rotating machine for this test is a one-channel
impeller submersible centrifugal pump. It rotates at 1,500
RPM, has a maximum flow of 1.7 cubic metres per
minute, and a power consumption of 3 KW. The

Figure 7: Loop performance indicator of four loops.

(a) Loop PIC51200  (b) Loop PIC52021
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submersible pump is a centrifugal pump and it consists
of an impeller with a fixed blade, housed in a suitable
shaped casing, mounted on a rotating shaft. The two ball-
bearings in the pump casing keep the shaft in place. The
shaft together with these bearings, the seal and the
impeller, are responsible for most of the measured
frequency components. The bearing-failures were induced
to the machine in the data set we used for this test.

There are two sets of data representing both healthy
and faulty conditions. Measurements are repeated for two
identical pumps with similar power consumption, age and
amount of running hours, where the first pump shows a
progressed pitting (i.e. surface cracking due to unequal
load and wear) in both gears, and the second pump is
virtually fault free.

Vibration was measured with 7 uni-directional
accelerometers, placed near the driving shaft (in x-y-z
directions), and upper and lower bearings supporting
shafts of both gearboxes performing a two-step reduction
of the running speed of the driving shaft to the �

(d) Loop TIC52028E(c) Loop TIC52021E 

Cluster techniques can
be used for control
loops and machinery
health monitoring
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Figure 8 shows the test results of sensors 2 and 7. The
top portion of figure is the raw sensor measurements. We
have added part of the healthy data to the beginning of
the faulty data to show the starting point of the faulty
condition. The measurement magnitude shows the data
separation.

Our observations:
� Both sensors can effectively detect the faulty conditions

of the second pump. To reduce the overall cost
associated with sensors, one could use only one sensor
(e.g., sensor 2) to monitor the pump.

� Indicators of sensor 2 have shown more dense 1s
(faulty indication) than sensor 7. This implies that the
location of sensor 2 is more suitable for the failure
detection of this pump application.

� There is a balance between cost and sensitivity of
failure detection. If more sensors are used, the sensor
fusion mechanism should be utilised to support the
decision making.

In conclusion, we can say that our new unified
approach for the control loop performance monitoring
and equipment in-loop faults detection, based on the
cluster trending analysis, has been shown to be effective
in the two test cases we have tried. We are currently
developing a commercial product for control loop
performance monitoring and equipment failure
detection. �

The authors, B. Ling, S. Dong, and U. Venkataraman are with
Migma Systems, Inc., 1600 Providence Highway, Walpole MA
02081 U.S.A; www.migmasys.com. Their work is protected by
U.S. patent (patent pending – US60/670,532). Dr. Ling may be
reached at bling@migmasys.com

outgoing shaft to which the impeller is attached.
The first three sensors (1, 2 and 3) correspond to three

different measurement directions near the incoming axis.
Sensors 4 to 7 are mounted on the gearbox casing. Sensors
4 and 5 are mounted near the first set of deceleration
gears (sensor 4 is placed at the upper part of the casing;
sensor 5 at the lower part of the casing). Sensors 6 and 7
are mounted near the second set of gears (sensor 6 is
placed at the upper part of the casing; and sensor 7 at the
lower part of the casing, near the outgoing shaft).

Data was measured for 24.3 seconds, lowpass-filtered
(analogue) to 1 KHz and digitised at 3,200 Hz (i.e., the
sampling time is about 0.3 ms). There are total 77,824 data
points for both healthy and faulty data sets.

We have found that the measurements of sensors 1 and
2 have given similar fault indications, which implies that
we can use one of the sensors placed at the shaft.
Furthermore, sensors 6 and 7 have the similar fault
indications, implying that one of them should be used. All
other sensors, 3, 4 and 5, are less effective. Overall, we
would suggest that two sensors are enough to monitor the
health condition of this submersible industrial pump.

Figure 8: Test results of sensors 2 and 7. (a) Measurement and 
faulty indicator at sensor 2.

(b) Measurement and
faulty indicator at sensor 7.
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